Synthesis of 3-(Substituted)-2,4,8,15-tetroxa-3phosphadispiro[5.2.5]hexadecane-3-oxides

Y. Hari Babu, N. Ravi Sankar**, C. Suresh Reddy* and C. Devendranath Reddy

Departments of Chemistry* / Botany**, Sri Venkateswara University Tirupati - 517 502, India Received May 27, 2004

Novel 3-(substituted)-2,4,8,15-tetroxa-3-phosphadispiro[5.2.5]hexadecane-3-oxides (**3-12**) have been synthesized by cyclization of 1,5-dioxaspiro[5.5]undecande-3,3-dimethanol (**1**) with various substituted aryl phosphorus dichloridates (**2**) in dry toluene-THF in the presence of triethylamine at 40-60 °C. Their molecular structures were determined by ir, nmr and mass spectral studies and were screened for antifungal activity against *Curvularia lunata* and *Aspergillus niger*, and antibacterial activity on *Staphylococcus aureus* and *Escherichia coli*. Most of them possess significant activity.

J. Heterocyclic Chem., 41, 1027 (2004).

Introduction.

Our research interest has been focused on the development of new synthetic methodology centered around biologically active phosphorus heterocycles [1] because functionalized phosphorus heterocycles and their derivatives are bioactive substances of great interest [2,3]. Cyclophosphamide and 1,3,2-dioxaphosphorinane 2-oxides are potential anticancer agents [4-6]. In addition cyclic phosphonate derivatives have been employed as anti-hypertensive agents [7], biocatalysts [8] and antibodies that catalyze the enantioselective aminolysis of lactones [9]. P(V)-Six membered heterocycles play a central role in the regulation of cell physiology [10]. Industrially they are good flame retardants [11], and stabilizers in alkyl resins and vinyl plastics [13]. They are excellent synthetic precursors as well [12]. In view of their multifaceted applications, synthesis of some phosphadispiro hexadecane 3-oxides have been accomplished.

Results and Discussion.

Cyclization of 1,5-dioxaspiro[5.5]undecande-3,3dimethanol (1) [14] with various substituted arylphosphorodichloridates (2) [15] was accomplished by the condensation of their equimolar quantities in dry toluene tetrahydrofuran mixture (3:1) in the presence of triethylamine at 40-60 °C (Scheme 1). The progress of the reaction was monitored by thin layer chromatographic (TLC) analysis of the reaction mixture at different time intervals. Solid triethylamine hydrochloride was removed by filtration. The reaction products (3-12) were isolated from the filtrate by removing the solvent in a rotary evaporator and recrystallizing the residue after washing with water. Reaction yields, elemental analysis, ir [16] and ³¹P nmr data are given in Table 1. ¹H, ¹³C nmr and mass spectral data (3, 4, 5 and 11) for these compounds (3-12) are presented in Tables 2, 3, and 4, respectively.

The aromatic protons of the aryloxy moiety exhibited chemical shifts in the δ 6.6-7.8 range [17]. In compounds **3-12** the H_a(1), H_a(5) and H_e(1), H_e(5) protons resonated as two multiplets at δ 3.33-3.64 and δ 3.89-4.12 respectively [18-20]. This indicates that the methylene protons at C₁ and C₅ are magnetically non-equivalent due to their equatorial and axial orientations in the six-membered chair conformation of the dioxaphosphorinane ring (Figure 1).

Scheme 1

1 119 51	eui, iit uiid	1 10000	seenar data or synt		ostituted) 2,	1,0,10 0	alona o phosph	uuispiio	[0.2.0]iio.au	decune 5 onides (
Compd.	m.p	Yield	Molecular	Elementa	al analysis		IR (cm ⁻¹)			
	°C	(%)	formula	Found	(Calcd)	P=O	P-O-Caliphatic	P-O-	Caromatic	³¹ P NMR
				С	Н		· · I	P-O	O-C	
3	190	70	C ₁₈ H ₂₅ O ₆ P	58.43 (58.69)	6.76 (6.79)	1317	1160	985	1253	-18, 33
4	179-180	68	C ₁₇ H ₂₂ O ₆ PCl	52.34 (52.57)	5.63 (5.67)	1299	1152	926	1208	-11.01, -11.42
5	185	71	$C_{18}H_{25}O_7P$	55.99 (56.25)	6.46 (6.51)	1318	1160	987	1253	-20.67
6	161	58	$C_{21}H_{25}O_6P$	62.08 (62.37)	6.15 (6.18)	1322	1176	990	1267	-17.23
7	194	63	C ₁₇ H ₂₂ O ₈ NP	50.88 (51.12)	5.48 (5.51)	1295	1148	983	1252	-16.81
8	174-176	65	C ₁₇ H ₂₃ O ₆ P	57.38 (57.62)	6.45 (6.49)	1310	1150	994	1257	-16.52
9	178-179	60	C ₁₉ H ₂₇ O ₆ P	59.44 (59.68)	7.03 (7.06)	1320	1147	990	1248	-16.02
10	179-180	63	C ₁₉ H ₂₇ O ₆ P	59.42 (59.68)	7.01 (7.06)	1286	1127	983	1251	-15.86
11	172	49	$C_{20}H_{27}O_8P$	59.10 (56.33)	6.30 (6.33)	1316	1160	988	1264	-20.62
12	180-181	64	C ₁₇ H ₂₂ O ₆ PCl	52.38 (52.57)	5.63 (5.67)	1308	1145	985	1257	-17.12

 Table 1

 Physical, IR and ³¹P NMR spectral data of Synthesis of 3-(substituted)-2,4,8,15-tetroxa-3-phosphadispiro[5.2.5]hexadecane-3-oxides (3-12).

Table 2

¹H NMR Chemical Shifts (J in Hz) Data of 3-12 [a]

Compd.	Cyclohe	exyl-H	Equatorial-H	Axial-H	H(7)&H(16)	Aryl moiety-H
	H(10), H (11) & H(12)	H(9) & H(13)	H(1) & H(5)	H(1)&H(5)		
3	1.23-1.62	1.63-1.93	3.52 (s, 2H)	4.06	4.44-4.62	6.6-7.3 (m, 4H)
	(m. 6H)	(m. 4H)		(s. 2H)	(m. 4H)	2.28 (s.3H, CH ₂)
4	1.25-1.70	1.70-1.81	3.37 (m. 2H)	4.01	4.31 (d. 2H _a)	7.22 (d. 2H).
	(m, 6H)	(m, 4H)		(s, 2H)	4.44-4.95	7.30 (d, 2H)
					$(m, 2H_{e})$	
5	1.33-1.51	1.64-1.92	3.47 (m, 2H)	4.04	4.41-4.59	6.87-7.83 (m, 4H)
	(m, 6H)	(m, 4H)		(s, 2H)	(m, 4H)	3.73 (s, 3H, OCH ₃)
6	1.28-1.68	1.67-1.90	3.57 (s, 2H)	3.98	4.37-4.78	6.85-7.72 (m, 7H)
	(m, 6H)	(m, 4H)		(s, 2H)	(m, 4H)	
7	1.27-1.71	1.65-1.93	3.42 (m, 2H)	4.11	4.46-4.93	7.12-7.14 (d, 2H),
	(m, 6H)	(m, 4H)		(m, 2H)	(m, 4H)	8.21-8.29 (d, 2H)
8	1.21-1.59	1.60-1.81	3.33 (m, 2H)	3.89	4.28-4.81	6.89-7.27 (m, 5H)
	(m, 6H)	(m, 4H)		(m, 2H)	(m, 4H)	
9	1.24-1.63	1.67-1.98	3.62 (s, 2H)	3.94	4.41-4.71	6.98-7.10
	(m, 6H)	(m, 4H)		(s, 2H)	(m, 4H)	7.21-7.32 (m, 3H)
						2.31 (s, 3H, CH ₃)
						2.25 (s, 3H, CH ₃)
10	1.23-1.64	1.65-1.97	3.48 (s, 2H)	3.99	4.42-4.84	6.86-7.08,
	(m, 6H)	(m, 4H)		(s, 2H)	(m, 4H)	7.31-7.38 (m, 3H)
						2.32 (s, 3H, CH ₃), 2.28
						(s, 3H, CH ₃)
11	1.26-1.54	1.61-1.81	3.64 (s, 2H)	3.97	4.42-4.61	7.35 (d, 2H),
	(m, 6H)	(m, 4H)		(s, 2H)	(m, 4H)	7.54 (d, 2H)
						4.56 (q, 2H, OCH ₂),
						1.19 (t, 3H, CH ₃)
12	1.27-1.72	1.69-1.83	3.52 (m, 2H)	4.12	4.38-4.93	7.20-7.63 (m, 4H)
	(m, 6H)	(m, 4H)		(m, 2H)	(m, 4H)	

[a] Recorded in CDCl3

Table 3

The multiplets in the region δ 4.28-4.95, are attributed to the H(7) and H(16) protons [14]. The cyclohexyl protons resonated as multiplets at δ 1.21-1.98 [18].

In the proton - decoupled ¹³C nmr [14,18,21,22] the C-1, C-5 and C-7, C-16 resonated at δ 70.8-73.2 and δ 59.4-61.7 respectively. The signal of C-14 appeared down field at δ 98.0-99.4 while that of C-16 appeared upfield at δ 33.9-35.1. The cyclohexyl carbons exhibited signals in the expected range. The oxygen bearing C-1' of aryloxy moiety resonated in downfield at δ 146.7-151.6. ³¹P nmr chemical shifts of these compounds (**3-12**) appeared in the region -11.42 to -20.67 ppm [23].

Presence of ions at appropriate m/z corresponding to the molecular ion of compounds **3**, **4**, **5** and **11** confirm their structures [14,24]. Although the fragmentation pattern is complex, it is possible to glean information on the structure of **3** via the presence of major ions at m/z 353 and m/z 325 for the [M⁺-CH₃] and [M⁺-C₃H₇] respectively. Similarly, **4** had high intensity peak patterns for M⁺+2, and C₃H₇ fragments at m/z 345 and m/z 43 respectively. In **5**, the major ion at m/z 212 resulted from the H₂PO₂C₆H₄OCH₃ fragment. The ion at m/z 353 was attributed to the [M⁻C₂H₅COO[•]]⁺ in **11**.

Antimicrobial Activity.

Compounds **3-12** and standard antifungal Griseofulvin were screened for their antifungal activity against *Curvularia lunata* and *Aspergillus niger*. Agar-cup method [25] was used for screening the activity of these compounds at two different concentrations (250, 500 μ g/disc). Their antibacterial activity was evaluated according to disc - diffusion method [26,27] at two different concentrations against *Staphylococcus aureus* and *Escherichia coli* and their activity compared with the standards Penicillin. The title compounds showed significant antifungal and antibacterial activity (Table 5).

EXPERIMENTAL

Melting points were determined on a Mel - Temp apparatus and are uncorrected. Elemental analyses were performed at the Central Drug Research Institute, Lucknow, India. IR spectra were recorded as KBr pellets on a Perkin - Elmer 283 unit. The ¹H, ¹³C and ³¹P

	¹³ C N	MR ch	emical	shift d	ata [a]	of com	pounds	Synthe	esis of 3	3-(subs	tituted)-	-2,4,8,15-te	troxa-3-phos	sphadis	piro[5.2.	5]hexade	cane-3-ox	ides (3-12)
Compd	C-1	C-5	C-6	C-7	C-9	C-10	C-11	C-12	C-13	C-14	C-16	C-1′	C-2′	C-3′	C-4′	C-5′	C-6′	Methyl Carbons
3	72.6	72.6	34.1	60.1	31.9	22	25	22	31.9	98.3	59.4	148.6	120.4	130.8	136.3	130.8	120.4	20
4	72.1	71.8	34.1	60.2	31.9	22	25	22	31.9	98.3	59.5	148.6	121.7	129.9	130.2	129.4	121.5	ı
5	73.2	73.2	34.9	61.4	32.2	22.4	25.4	22.4	32.2	99.4	60.5	148.6	115.9	119.8	157.8	119.8	115.9	53.7
7	72.4	72.4	35.1	61.5	32.3	22.6	25.7	22.3	32.3	98.7	60.7	149.5	129.1	125.2	145.1	126.3	129.1	
													(d, J = 4.4)				(d, 4.4)	
8	73.2	73.2	34.8	60.09	31.8	22.4	25.3	22.4	31.6	98.0	6.0	149.8	119.3	128.4	126.1	128.4	119.3	
											J	d, $J = 8.2$)	(d, J = 5.0)			J	d, J = 5.0	
6	72.5	72.3	34.2	61.3	31.3	22.2	25.1	22.2	31.1	98.7	61.1	147.2	127.5	137.8	126.1	127.6	118.6	12.8 & 20.3
																		(C-2' & 3')
10	71.9	71.1	33.9	60.1	30.7	22.2	25.2	22.2	30.5	98.4	59.8	146.7	128.3	130.4	134.5	127.1	119.3	17.8 & 20.8
												(d, 7.6)				(d, 4.6)	(d, 6.7)	(C-2' & 4')
11	71.7	70.8	34.9	61.4	32.4	22.5	25.6	22.4	32.2	99.2	60.5	151.6	117.5	135.5	119.0	131.2	129.8	168.0 (C=O)
																		63.3(OCH ₃) 14.1 (CH ₃)
12	72.7	72.3	34.6	61.7	32.3	22.6	25.8	22.6	32.7	99.1	60.9	148.4 (d, 7.4)	129.1	127.9	126.3	132.5	120.4	
[a] Data	in pare	uthese	s are co	guilque	consta	nts, J iı	n Hz; [ŀ	b] Reco	urded in	CDCI	÷							

Table 4

Mass Spectral Data of 3, 4, 5 and 11

Compd. m/z (relative abundance)

- **3** 367 (M⁺, 23), 353 (36), 325 (48), 278 (44), 235 (28), 212 (54),
- 188 (32), 181 (14), 151 (12), 133 (20), 108 (82), 83 (100), 55 (90)

 4
 388 ((M⁺, 28), (M⁺ +2, 12)), 359 (14), 345 (100), 289 (5), 260 (4),
- 209 (3),181 (16), 128 (22), 111 (2), 99 (18), 83 (27), 55 (76)
- **5** 384 (M⁺, 42), 342 (27), 328 (18), 277 (13), 286 (32), 212 (48), 204 (42), 186 (23), 123 (44), 99 (18), 83 (22), 55 (14)
- 11 426 (M⁺, 22), 384 (12), 370 (14), 381 (28), 353 (36), 278 (12), 212 (42), 183 (8), 164 (30), 148 (22), 99 (11)

1.63-1.93 [m, 4H, H(9) and H(13)], 2.28 (s, 3H, CH₃), 3.52 [s, 2H, H(1) and H(5)_{equatorial}], 4.06 [s, 2H, H(1) & H(5)_{axial}], 4.44-4.62 [m, 4H, H(7) and H(16)], 6.63-7.35 (m, 4H, Ar); ¹³C NMR (CDCl₃) & 20 (C-7'), 22 (C-10 and 12), 25 (C-11), 31.9 (C-9 and 13), 34.1 (C-6), 59.4 (C-16), 60.1 (C-7), 72.6 (C-1 and 5), 98.3 (C-14), 120.4 (C-2' and 6'), 130.8 (C-3' and 5'), 136.3 (C-4'), 148.6 (C-1'); ³¹P NMR (CDCl₃) & -18.33 ppm; MS m/z (%): 367 (M⁺-1, 23), 353 (36), 325 (48), 278 (44), 235 (28), 212 (54), 188 (32), 181 (14), 151 (12), 133 (20), 108 (82), 83 (100).

Anal. Calcd. for C₁₈H₂₇O₆P: C, 58.37, H, 7.29. Found: C, 58.08; H, 7.26.

			Anumu	lobial Activity	01 5-12					
Compd.	Zone of inhibition (mm)									
-		Bac	cteria		Fungi					
	Staphylo	coccus aures	Escheri	chia coli	Curvulari	a lunata	Aspergil	lus niger		
	250	500	250	500	250	500	250	500		
	µg/disc	µg/disc	µg/disc	µg/disc	µg/disc	µg/disc	µg/disc	µg/disc		
3	2	3	2	5	8	15	7	12		
4	6	12	6	11	16	21	14	21		
5	4	7	3	8	9	14	7	13		
6	2	3	2	4	10	18	11	18		
7	8	11	7	12	22	24	19	23		
8	1	3	2	3	7	12	9	15		
9	3	5	2	6	10	15	8	13		
10	5	10	5	9	13	18	13	21		
11	7	12	6	11	11	17	9	19		
12	6	11	7	13	15	21	12	19		
Penicillin	24		20							
Griseofulvin					28		28			

Table 5

Antimicrobial Activity of **3-12**

NMR spectra were taken on a AMX-400 MHz spectrometer operating at 400 MHz for ¹H, 100 MHz for ¹³C and 161.9 MHz for ³¹P in DMSO- d_6 and CDCl₃, and chemical shifts were referenced to TMS (¹H and ¹³C) and 85% H₃PO₄ (³¹P). Mass spectral data were recorded on GC-MS instrument at 70 eV, with a direct inlet system.

Synthesis of 3-(4-Methylphenoxy)-2,4,8,15-tetroxa-3-phos-phadispiro[5.2.5]hexadecane 3-Oxide (**3**).

A solution of 4-methylphenylphosphorodichloridate (1.13 g, 0.005 mol) in dry toluene-THF (3:1) (20 mL) was added to a stirred solution of 1,5-dioxaspiro[5.5]undecande-3,3dimethanol (1.08 g, 0.005 mol) and triethylamine (1.01 g, 0.01 mol) in dry toluene-THF (3:1) (50 mL) at room temperature over a period of thirty minutes. After the addition, the temperature was slowly increased to 40-60 °C and heating was continued for about five hours with stirring. Progress of the reaction was followed by TLC. Triethylamine hydrochloride was separated from the reaction mixture by filtration and the solvent was removed from the filtrate in a rotary evaporator. The residue after washing with water to remove the residual triethylamine hydrochloride was dried and recrystallized from a mixture of hexane and ethyl acetate (5:2) to yield the title compound (3) (1.29 g, 70%) mp 190 °C. IR (KBr) cm⁻¹: 1317 (P=O), 1160 (P-O-C_{aliphatic}), 985 and 1253 (P-O-C_{aromatic}); ¹H NMR (CDCl₃) & 1.23-1.62 [m, 6H, H(10), H(11) & H(12)], Compounds **4-12** were prepared by this procedure and their synthetic and analytical, ir, ¹H, ¹³C, ³¹P NMR and mass spectral data are given in Tables 1, 2, 3 and 4 respectively.

Acknowledgements.

The authors express thanks to Dr. C. Nagaraju, Department of Chemical Engineering, S. V. University, Tirupati, for helpful discussions and the Directors of SIF, IISc, Bangalore for the spectral data. Y. Hari Babu is grateful to CSIR for awarding Senior Research Fellowship and to UGC for providing Financial Assistance.

REFERENCES AND NOTES

* To whom correspondence may be made; e-mail: <u>csureshsvu@yahoo.com;</u> Tl: 91-0877-2249666 ext. 275.

[1a] L. N. He, and R. X. Zhuo, *Heteroatom Chem.*, **10**, 105 (1999);
[b] L. N. He, R. X. Zhuo, K. Li and X. P. Liu, *Phosphorus, Sulfur and Silicon*, **147**, 111 (1999);
[c] K. Li, L. N. He, X. H. Qing, Y. P. Luo and M. W. Ding, *Heterocyclic Commun.*, **5**, 189 (1999);
[d] L. N. He, R. X. Zhuo, R. Y. J. Zhou, Chen, *Synth. Commun.*, **27**, 2853 (1997).

[2] A. A. Prishchenko, M. V. Livantsov, Abstracts of XIVth International Conference on Phosphorus Chemistry - Cincinnati, USA, July 12-17 (1998); Gordon and Breach Publisher, New York, 213 (1998).

[3a] R. Shabann, F. H. Osman and S. S. Atress, Tetrahedron, 50,

6975 (1994); [b] C. L. Penney, and B. Belleau, *Can. J. Chem.*, **56**, 2396 (1978); [c] J. P. Majoral and J. Navech, *Bull. Soc. Chim. Fr.*, 95 (1971);

[d] P. Chabrier, T. Nguyen and D. Le Maitre., *Sci Paris, Sci. Ser. C.*, 1802 (1969).

[4] H. Arnold, F. Bourseaux and N. Brock, *Nature*, **181**, 931 (1958).

[5] C. D. Reddy and K.V. Raghu, *Phosphorus, Sulfur and Silicon*, 147, 357 (1999).

[6] L. N. Rao, C. D. Reddy, V. K. Reddy, J. D. Hagar, K. Tran and K. D. Berlin, *Phosphorus, Sulfur and Silicon*, **177**, 399 (2002).

[7] I. Morita, K. Kunimoto, M. Tsuda, S. I. Tada, M. Kise and K. Kimura, *Chem. Pharm. Bull.*, **35**, 4144 (1987).

[8a] P. A. Bartlett, J. E. Hanson and P. P. Gannousis, *J. Org. Chem.*, 55, 6268 (1990); [b] B. P. Morgan, J. M. Scholtz, M. D. Ballinger, I. D. Lipkin and P. A. Bartlett, *J. Am. Chem. Soc.*, 113, 297 (1991); [c] M. M. Mader and P. A. Bartlett, *Chem. Rev.*, 97, 1281 (1997).

[9a] J. D. Stewart, L. J. Liotta and S. J. Benkovic, Acc. Chem.
 Res., 26, 396 (1993); [b] S. J. Benkovic, A. D. Nappear and R. A.
 Lerner. Proc. Nat. Acad. Sci., USA, 85, 5355 (1988); Chem. Abstr., 110, 54057g (1989).

[10] P. Greengard and G. A. Robinson, Sr., Eds., Advances in Cyclic Nucleotide Research ; Raven Press, New York, 1-18 (1988).

[11] L. D. Quin, A Guide to Organophosphorus Chemistry, John Wiley & Sons, Inc., Chapter 11 (2000).

[12] K. Praveen Kumar, C. Muthiah, Sudhakumaraswamy and K. C. Kumaraswamy, *Tetrahedron Lett.*, **42**, 3219 (2001).

[13] A. Eberhard and F. H. Westtheimer, J. Am. Chem. Soc., 87, 253 (1965).

[14] M. C. Murguia, S. E. Vaillard and R. J. Grau, *Synthesis*, 7, 1093 (2001).

[15] I. K. Rubtsova and R. D. Zhilina, *Zh. Prikl. Khim.*, **32**, 2604 (1959).

[16] L. C. Thomas; The interpretation of the infrared spectra of organophosphorus compounds, Heydon, London, 1974.

[17] M. S. R. Naidu and C. Naga Raju, *Indian J. Chem.*, **27B**, 88 (1988).

[18] Y. H. Babu, P. V. G. Reddy, C. S. Reddy, C. D. Reddy and P. U. M. Devi J. Heterocylic Chem., **39**, 1039 (2002).

[19] J. H. Yu, A. E. Sopchik, A. M. Arif and W. G. Bentrude, J. Org. Chem., 55, 3444 (1990).

[20] R. R. Holmes, K. C. Kumar Swamy, J. M. Holmes and R. O. Day, *Inorg. Chem.*, **30**, 1052 (1991).

[21] C. D. Reddy, R. S. N. Reddy, C. N. Raju, M. ElmaSri, K. D. Berlin and S. Subramanian, *Magn. Reson. Chem.*, **29**, 1140 (1991).

[22] C. D. Reddy, R. S. N. Reddy, M. S. Reddy, M. Krishnaiah, K. D. Berlin and P. Sunthankar, *Phosphorus, Sulfur and Silicon*, **62**, (1991).

[23] L. D. Quin and J. G. Verkade, Phosphorus-31 NMR Spectral properties in compound characterization and structural analysis VCH Publishers, Inc., New York, 1994.

[24] R. M. Silverstein and F. X. Webster, Spectrometric Identification of Organic Compounds, Chapter-I, VI ed., John Wiley & Sons, Inc., New York, 1998.

[25] F. Kavangh, Analytical Microbiology, New York, Academic Press, 290 (1963).

[26] K. R. Cruickshan, Medical Microbiology, A Guide to Diagnosis and Control of Infection, IIed. London: E & S, Livingston Ltd., 888 (1968).

[27] A. W. Beuer, M. K. Kirby, J. C. Sherries and A. Truck, Am. J. Clin. Pathol., **45**, 493 (1969).